Simplex regression models with measurement error
Resumo: This paper considers the simplex regression model when there is measurement error in the covariate. We consider a structural approach where the measurement error follows a normal or gamma distribution. We apply an EM Monte Carlo algorithm to estimate the parameters using a pseudo-likelihood function. A simulation study is used to investigate the impact of ignoring the measurement error. Finally, the results are illustrated with a data set.
Local: Auditório do IME para aqueles que desejam acompanhar de forma presencial e no link
https://www.youtube.com/channel/UCC96Rmc3qKEYkKk187IcLdA/live
Link da palestra:
https://www.youtube.com/watch?v=Kpkusm8pj5I